Semester 3
DATA STRUCTURE AND ALGORITHMS
The course introduces students to fundamental data structures and basic performance measures, analysis and design of computer algorithms. Both the theoretical and programming underpinnings of data structures are taught, as well as main applications and usage scenarios. The course emphasizes the connections between mathematical analysis and programming aspects of data structures and how they affect performance. Presented with a computational problem, the students will be able to suggest the right data structure to solve it. Students will be able to analyze the asymptotic performance of algorithms, apply important algorithmic paradigms to problems at hand, and use algorithms in real-life engineering situations.
2D AND 3D ANIMATION TECHNIQUES
The process of creating both 2D and 3D animations typically begins the same way, from the storyboard. Once the storyboard is done, the animatic stage begins, moving the images into appropriate animation software – which is then different for 2D and 3D. It is important to have a clear vision of the final video a student wishes to create and the goals student wishes to achieve, as they will significantly influence the decision to create 2D and/or 3D animation. The course will cover theoretical concepts, tools and techniques that will help students in their creation process.
HUMAN COMPUTER INTERACTION
This course aims to introduce students to the fundamental concepts and principles of human-computer interaction (HCI). HCI is an interdisciplinary field that integrates theories and methodologies from computer science, cognitive psychology, design, and other areas. In particular, it ensures students gain knowledge of all key features and techniques essential for the design process and how these are applied to different types of systems, users and contexts. Students will carry out an individual project practically demonstrating knowledge of the theoretical underpinnings of understanding requirements, designing and evaluating interactive products, services and experiences.
CHARACTER CREATION AND DEVELOPMENT
Creating a game story involves more than an introduction, narrative plot, and conclusion. Game designers must create different characters which are both interesting and relatable. Students learn how to create and develop both the main characters (the hero or heroine) as well as supporting characters. Students learn different stages of character development, ranging from psychological aspects to physical appearance and costume. Special abilities, weapons, acquisition of skills and powers through game progression are all examined from the perspective of coherent character development. Students will also learn how to develop the non-player characters (NPCs), including their skills and attributes, and the reaction to the main character.
CHARACTER MODELING AND ANIMATION
The course focuses on the modelling and animation skills required to build characters. Students learn about character modeling techniques, gaining ability to create 3D characters. Advanced animation techniques are presented, so that the students can add movement and animation to designed and modeled characters.
Students learn about the mechanics of the human body and its movement, useful both for designing realistic action and interpreting non-verbal cues. The course proposes that a basic understanding of anatomy is vital to the practice of game art. Students will receive introduction to general anatomical and biological principles that help them understand and design variations in shape and size of human bodies and faces, as well as to understand how audiences perceive these differences. Students will handle generalized concepts and develop an understanding of archetypes. They will learn which body features they need to be aware of when designing their characters and their actions in order to solicit emotion and distinguish between positive and negative caricature.
GAME ENVIRONMENT (ARCHITECTURAL, SPACE, LIGHTING)
With game levels spanning different environments, an understanding of set design is needed to enhance the game experience. The students will learn about different types of environments, their characteristics and how they communicate to the player. Among other, the students will examine the advantages and disadvantages of various venues, symbolism in architecture and various environments, as well as the effects of lighting design.
Semester 4
APPLIED PROGRAMMING
Throughout the course, students will learn core-programming concepts that apply to different programming languages and how to apply those concepts when developing games. Incorporating 3D interactive graphics including modeling, animation, transformations, lighting, shaders, ray casting, and other, will all be covered by the course. Students will also be able to write gameplay code, event-driven programming, code that allows high level control of gameplay behavior, movement, and events, as well as to simulate the physics principles of gravity and collision detection.
This course is designed to teach students techniques and algorithms used in modern real-time rendering and film rendering. Students will make use of a modern rendering API, such as OpenGL, to learn GPU shader programming and the various lighting and rendering pipelines commonly used in the industry today. Other cutting-edge GPU-related technologies are explored. The students will also be introduced to the concept and importance of visual perception and its impact on the choice of rendering techniques.
LEVEL DESIGN
The course continues to expand students’ understanding of game requirements with a focus on constructing a playable level. Students learn how to manage game scenario, define the character’s path and the ramifications of the scenario. The best practices and processes for designing and constructing levels for different game genres are introduced. By the end of the course, students have practical experience and develop their own approach to building game levels.
SOUND DESIGN AND SPECIAL EFFECTS
A key component of game experience, the course introduces basic aspects of sound design for games. Students will cover the topics of sound effects, game voices, soundtracks and music selection. Methodologies in conveying a desired mood through sound will be examined, as well as choosing music that elevates rather than distracts from play. Through practical exercises, students will be presented with different methods of sound design and examples of realistic sound effects.
ACTING AND ACTION ANALYSES (ECTS 3)
A successful game design is one where game characters are brought to life, their creators making them move, feel, breathe. During the course, students are introduced to fundamental and advanced acting theories and techniques for both human and non-human characters in order to enhance their feel and performance. Student will learn to utilize particular aspects of acting, movement, and rhythm, in order to create unique characters, distinguish between different character roles, the adjustments and thinking processes behind them. The objective is to provide an understanding on how to make a character unique, distinguishable from others in thinking, action, personality and emotion they entice from the player.
CINEMATOGRAPHY FOR GAMES
This hands-on course introduces game designers to the tools and techniques of cinematography that can be applied to game design. The course provides a comprehensive overview of camera operation, sound and lighting techniques, lenses and aesthetic principles. Demonstrations and lectures on cameras, camera movement and other areas are combined with practical experience, where each student writes a cinematic treatment for their game.
PROJECT MANAGEMENT
The development of games is not only about creativity, technical, and artistic elements; it also has diverse organizational and business aspects. The main aim of the course is to develop competencies and skills in planning, executing and controlling outcomes. Students will be able to define key aspects that should be determined before starting the project, including: project charter, schedules, risks, and team resources. The course guides students through fundamental project management tools and behavioral skills necessary to successfully launch, lead, and realize projects.